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Abstract—Since multimodal learning is able to take advantage
of the complementarity of multimodal signals, the performance
of multimodal emotion recognition usually surpasses that based
on a single modality. In this paper, we introduce deep gener-
alized canonical correlation analysis with an attention mech-
anism (DGCCA-AM) to multimodal emotion recognition. This
model extends the conventional canonical correlation analysis
(CCA) from two modalities to arbitrarily numerous modalities
and implements multimodal adaptive fusion with an attention
mechanism. By adjusting the weights matrices to maximize
the generalized correlation of different modalities, DGCCA-AM
extracts emotion-related information from multiple modalities
and discards noises. The attention mechanism allows a neural
network to learn adaptive fusion weights for different modalities
and produces a more effective multimodal fusion and superior
emotion recognition performance. We evaluate DGCCA-AM on
a public multimodal dataset, SEED-V. Our experimental results
demonstrate that DGCCA-AM achieves a state-of-the-art mean
accuracy of 82.11% and standard deviation of 2.76% for five
emotion classifications with three modalities.

Index Terms—Multimodal deep learning, deep generalized
canonical correlation analysis, attention mechanism, multimodal
emotion recognition.

I. INTRODUCTION

Emotions are an important part of human life [10]. With
the current boom of human-computer interaction (HCI), recent
studies have been devoted to enhancing computers with mul-
tiple abilities to build better interactions between computers
and users. Emotion recognition is essential to HCI because
effectively detecting the emotional state makes it possible to
build a reliable bridge between computers and users [16].

In recent years, various physiological-signal-based methods
have been developed for emotion recognition. These signals
are more accurate and difficult to be deliberately changed by
users. As a physiological signal that directly reflects brain
activity, electroencephalography (EEG) has been demonstrated
as a reliable and promising indicator of the human mental state
[17]. Kim et al. showed that electromyogram, electrocardio-
gram, skin conductivity, and respiration changes were reliable
signals for emotion recognition [19]. Võ et al. found that
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the pupil old/new effect was clearly diminished for emotional
words [20].

Since emotions are complex psychophysiological phenom-
ena associated with many nonverbal cues, it is difficult to
build robust emotion recognition models using a single modal-
ity. Recent research has indicated that multimodal learning
is more powerful than unimodal learning [3]. Multimodal
learning involves relating information from multiple sources
and attempting to utilize the complementary property and
independent information of the multimodal signals. Zheng
et al. combined EEG signals and eye movement signals to
build a fusion model and successfully improved the emotion
recognition performance [13]. Lu et al. employed feature-level
concatenation, MAX fusion, SUM fusion, and fuzzy integral
fusion to merge EEG and eye movement features and found
that EEG and eye movement features have complementary
properties for emotion recognition [7].

In recent years, deep neural networks have performed well
for classification problems. They are able to learn high-level
representation from the raw input features and effectively
achieve the classification goal [11]. Qiu et al. adopted deep
canonical correlation analysis (DCCA) for multimodal emo-
tion recognition and obtained significant performance im-
provement with respect to three emotion recognition tasks
[12]. DCCA computes the representation of multiple modal-
ities by passing them through multiple stacked layers of
nonlinear transformation. However, DCCA can only maximize
the correlation between two different modalities due to the
limitation of the CCA constraint. To extend DCCA from two
modalities to arbitrarily numerous modalities, we introduce
deep generalized correlation constraints analysis (DGCCA) [4]
to multimodal emotion recognition in this paper.

The attention mechanism was initially adopted in the area of
image processing to capture the local features of images such
as human vision. In recent years, it has been widely used in
the fields of natural language processing and computer vision
to solve the classification problem. Liu et al. combined the
attention mechanism with LSTM and successfully alleviated
the problem of how to capture precise sentiment expressions



in aspect-based sentiment analysis for reasoning [21]. A self
attention mechanism that is specific to classification models
has been proposed to inform the classifier regarding which
parts of the input are more relevant to the output class [9].
In this paper, we introduce the attention mechanism [9] to
DGCCA and propose a novel model called DGCCA-AM.
Compared with weighted sum fusion in DCCA [3], it assigns
each modality an adaptive weight and alleviates the need for
users to seek the prior knowledge of the modality.

Our main contributions are as follows:
1) We introduce DGCCA to multimodal emotion recognition

and extend DCCA from two modalities to arbitrarily
numerous modalities for the first time.

2) We introduce the attention mechanism to DGCCA and
propose a novel model called DGCCA-AM.

3) We demonstrate that EEG, eye image (EIG), and eye
movement (EYE) modalities have complementary prop-
erties.

4) Our new model, DGCCA-AM, achieves considerable im-
provement in prediction accuracy, 82.11% with a standard
deviation of 2.76%, with respect to a three-modality
dataset, SEED-V.

The remainder of this paper is organized as follows. Section
II summarizes the related work about CCA and DCCA.
In Section III, we describe feature extraction methods and
the framework of DGCCA-AM. The experimental settings,
results, and analysis are presented in Section IV. Finally, the
conclusions are given in Section V.

II. RELATED WORK

A. Canonical Correlation Analysis

Canonical correlation analysis (CCA) was proposed by
Hotelling [1]. It is a standard statistical technique and a
fundamental multimodal learning method for finding linear
projections of two vectors that are maximally correlated.
Hardoon et al. introduced CCA to machine learning [18].

Let X1 ∈ Rn1 and X2 ∈ Rn2 be two vectors, with covari-
ance matrix Σ11 for X1, Σ22 for X2 and cross-variance matrix
Σ12. CCA attempts to find the following linear transformations
of X1 and X2 that maximize the correlation between them.

(w∗1 , w
∗
2) = argmax

w1∈Rn1 ,w2∈Rn2

corr
(
w>1 X1, w

>
2 X2

)
= argmax

w1∈Rn1 ,w2∈Rn2

w>1 Σ12w2√
w>1

∑
11 w1w>2 Σ22w2

.
(1)

Eq. (1) is invariant to linear transformation with two scaling
factors w1 and w2. We can reformulate the equation as follows:

(w∗1 , w
∗
2) = arg max

w>1 Σ11w1=w>2 Σ22w2=1

w>1 Σ12w2. (2)

To find multiple results of
(
wi

1, w
i
2

)
, subsequent projections

are also constrained to be uncorrelated with previous ones, i.e.,
wi

1Σ11w
j
1 = wi

2Σ22w
j
2 = 0 for i < j. Combining the top k

projection vectors wi
1 into a matrix A1 ∈ Rn1×k as column

vectors and similarly placing wi
2 into A2 ∈ Rn2×k, we then

identify the top k ≤ min (n1, n2) projections as follows:

maximize tr
(
A>1 Σ12A2

)
subject to A>1 Σ11A1 = A>2 Σ22A2 = I.

(3)

To solve the objective function of Eq. (3), we first define
T = Σ

−1/2
11 Σ12Σ

−1/2
22 , and let Uk and Vk be the matrices

of the first k left singular and right singular vectors of T.
The optimal objective value is then the sum of the top
k singular values of T, and the optimum is obtained at
(A∗1, A

∗
2) =

(
Σ
−1/2
11 Uk,Σ

−1/2
22 Vk

)
. This method requires the

covariance matrices Σ11 and Σ22 to be nonsingular, which is
usually satisfied in practice.

B. Deep Canonical Correlation Analysis for multimodal
recognition

Deep canonical correlation analysis (DCCA) was proposed
by Andrew and colleagues [2]. DCCA combines the powerful
neural network with CCA and overcomes the limitation that
CCA can only find a linear transformation of two input
vectors. Qiu et al. introduced DCCA to multimodal emotion
recognition [12], and Liu et al. examined the robustness of
DCCA [3].

Let X1 ∈ RN×d1 be the instance matrix for the first
modality of DCCA and X2 ∈ RN×d2 be the instance matrix
for the second modality of DCCA. Here, N is the number
of instances, and d1 and d2 are the dimensions of extracted
features for these two modalities, respectively.

We have two neural networks that compute representations
of multiple modalities by passing them through multiple
stacked layers of nonlinear transformation.

Let us use f1 (X1) and f2 (X2) to represent the network
outputs. The weights, W1 and W2, of these networks are
trained through standard backpropagation to maximize the
CCA objective:

(u∗1, u
∗
2,W

∗
1 ,W

∗
2 ) = argmax

W1,W2

corr
(
u>1 f1 (X1) , u>2 f2 (X2)

)
.

(4)
After training the neural networks, Qiu et al. proposed a
weighted sum fusion method [12]:

O = α1f1 (X1) + α2f2 (X2) , (5)

where α1 and α2 are parameters that are set by the user.
The fused features are used to train a classifier to recognize
different emotions. The best output dimensions and the optimal
fusion coefficients α1 and α2 must be searched by using the
prior knowledge of the user and considerable experimentation.

The main shortcoming of DCCA is that only two input
modalities are allowed. In addition, users need to set the fusion
parameters α1 and α2 by experience.
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Fig. 1. The framework of DGCCA-AM. It consists of deep networks, GCCA constraint, attention weights, feature fusion layer, and classifier. The GCCA
parameters are updated to maximize the GCCA constraints of different modalities. At the same time, the related parameters are updated to minimize classifier
loss.

III. METHODS

A. Feature extraction

For the SEED-V dataset, differential entropy (DE) features
are extracted from EEG signals using a short-time Fourier
transform (STFT) with 4 s nonoverlapping Hanning window
[5] [6]. These features are divided into five frequency bands:
δ (1-4 Hz), θ (4-8 Hz), α (8-14 Hz), β (14-31 Hz), and γ (31-
50 Hz). In this way, at every time step, we have DE features
of 62 channels, each of which contains data in 5 frequency
bands. Finally, the DE features extracted from EEG contain
310 dimensions in total.

As for eye movement features, the same method used in
[7] is applied to extracting thirty-three-dimensional features,
including pupil diameter, dispersion, and so on. The detailed
features are listed in Table I.

TABLE I
THE DETAILS OF FEATURES EXTRACTED FROM EYE MOVEMENT SIGNALS.

Eye movement parameters Output dimensions
Pupil diameter (X and Y) Mean, standard deviation

and PSD (or DE) in four
bands: 0-0.2 Hz, 0.2-0.4
Hz, 0.4-0.6 Hz, and 0.6-1
Hz

Dispersion (X and Y) Mean, standard deviation
Blink duration (ms) Mean, standard deviation
Saccade Mean, standard deviation

of saccade duration (ms)
and saccade amplitude (◦)

Event statistics Blink frequency, fixation
frequency, fixation dura-
tion maximum, fixation
dispersion total, fixation
dispersion maximum, sac-
cade frequency, saccade
duration average, saccade
amplitude average, sac-
cade latency average

As for eye images, Guo et al. proposed an efficient deep
neural network model for combining CNN and LSTM net-

works to extract high-level features. They applied two deep
residual networks (ResNet) pretrained on ImageNet to reduce
the dimensions of both left and right eye images, two LSTM
layers to extract features, and a fully connected layer as an
output layer. After feature extraction, EIG features contain 512
dimensions [8].

B. DGCCA-AM

In this section, we introduce DGCCA and the attention
mechanism for multimodal emotion recognition. DGCCA ex-
tends DCCA from two modalities to arbitrarily numerous
modalities. In training, DGCCA passes the input vectors in
each modality through multiple layers of nonlinear trans-
formation and backpropagates the gradient of the GCCA
objective with respect to network parameters to tune each of
the modal networks. To fuse multiple modalities and recognize
emotions, we use the attention mechanism for modal fusion
and Softmax classifier for classification. While the model uses
the gradient of GCCA to adjust the network, the classifier also
backpropagates the gradient to tune related networks. Fig. 1
depicts the framework of our proposed model.

1) Deep generalized canonical correlation analysis: Let
(X1, X2, · · · , Xi, · · · , XJ) denote the input modalities and
Xi ∈ Rdi×N be the instance matrix for the ith modality
of signals for i = 1, 2, · · · , J . Here, N is the number
of instances, and di represents the dimensions of extracted
features. We assume that the network of the ith modality has
Ki layers. The kth layer in the ith modality has Ci

k units. The
output layer has o units, and the output of the kth layer for
the ith modality is as follows:

hik = s(W i
kh

i
k−1 + bik), (6)

where s : Rcik → Rcik is a nonlinear activation function, W i
k ∈

Rcik×c
i
k−1 is a matrix of weights and bik ∈ Rcik is a vector of

bias. We denote the output of the final layer as fi(Xi) ∈
Ro×N .



The goal of DGCCA is to learn parameters W i =
{W i

1, · · · ,W i
K} and bi = {bi1, · · · , biK} by solving the fol-

lowing optimization problem:

minimize
Ui∈Ro×r,G∈Rr×N

J∑
i=1

∥∥G− U>i fi (Xi)
∥∥2

F

subject to GG> = Ir.

(7)

where fi(Xi) represents the network outputs of the ith

modality, and Ui represents a linear transformation of the ith

modality.
We solve the DGCCA optimization problem using stochas-

tic gradient descent and adopt backpropagation to update the
weights matrices Wi and bias vectors bi. We now show a
sketch of the gradient derivation. The detailed derivation is
given in [4]. The solution to the optimization problem is
transformed to an eigenvalue problem.

In particular, we define a scaled empirical covariance matrix
of the ith network output as Cii = f (Xi) f (Xi)

> ∈ Ro×o.
Here, Pi = f (Xi)

>
C−1

ii f (Xi) ∈ RN×N is the corresponding
projection matrix. It is easy to determine that Pi is symmetric
and idempotent. We define Ps =

∑J
i=1 Pi. Since Ps is the sum

of positive semidefinite Pi, Ps is also positive semidefinite.
Obviously, we can see that the rows of G are the top r

(orthonormal) eigenvectors of Ps, and Ui = C−1
ii f (Xi)G

>.
Then, we can rewrite the objective function as follows:

J∑
i=1

‖G− U>i fi(Xi)‖2F

=

J∑
i=1

∥∥∥G−Gfi (Xi)
>
C−1

ii fi (Xi)
∥∥∥2

F
,

=rJ − Tr(GMG>).

(8)

As indicated in Eq. (8), to minimize the GCCA objective, it
is formulated as maximizing Tr

(
GMG>

)
, which is the sum

of eigenvalues L =
∑r

i=1 λi(M).
By taking the derivative of L with respect to each output

layer fi (Xi), we have the following:

∂L

∂fi (Xi)
= 2UiG− 2UiU

>
i fi (Xi) . (9)

Therefore, the gradient is the difference between the r-
dimensional auxiliary representation G embedded into the
subspace spanned by the columns of Ui (the first term) and
the projection of the actual data in fi (Xi) onto the subspace
mentioned above (the second term). Intuitively, if the auxiliary
representation G is far away from the modal-specific represen-
tation U>i fi (Xi) , then the network weights should receive a
large update. The time complexity of computing the gradient
descent is O(JNrd), where d = max (d1, d2, . . . , dJ) indi-
cates the largest dimensions of the input modalities.

2) Attention-mechanism-based feature fusion: Attentive
neural networks have recently demonstrated success in a wide
range of tasks ranging from question answering to machine
translation and image captioning. In this section, we propose

an attention-mechanism-based feature fusion method for mul-
timodal emotion recognition [9].

Let Fj ∈ Ro×J be a matrix consisting of the jth instance
of each output layer [f j1 (X1), f j2 (X2), · · · , f jJ(XJ)], where
fi(Xi) is the result in the output layer of the ith modality,
J is the number of modalities, and f ji (Xi) ∈ Ro. The joint
representations of all jth instances are formed by the weighted
sum of the vectors in Fj :

β = tanh(Fj), (10)
α = softmax

(
wTβ

)
, (11)

rj = Fjα
T , (12)

where w ∈ RJ is the trained parameter vector, and wT is
the transpose of w. The dimensions of α and r are J and
o, respectively. We then obtain the final attention mechanism
based fusion representations:

f j = tanh(rj). (13)

In this model, we use a Softmax classifier to predict the
label ŷ for the fusion extracted features. Let X denote the
input modalities. The classifier takes the fusion representations
as inputs:

p̂(y|X) = softmax
(
W (X)f j + b(X)

)
, (14)

ŷ = arg max
y

p̂(y|X). (15)

The cost function is the negative log-likelihood of the true
class label:

L = − 1

M

M∑
j=1

tj log (yj) + λ‖θ‖2F , (16)

where M is the number of instances, and λ is an L2 regular-
ization hyperparameter.

Now, we have two gradients: one is from DGCCA recon-
struction, and the other is from the softmax classifier. We set
different learning rates rDGCCA = 0.01 and rClassifier =
0.001 and update gradients at the same time.

IV. EXPERIMENT SETTINGS AND RESULTS

A. The SEED-V Dataset

We evaluate our model with respect to the SEED-V dataset.
The EEG, eye movement and eye image data of participants
were recorded by EEG cap and eye tracking glasses simulta-
neously.

The SEED-V dataset contains five emotions: happy, sad,
fear, disgust, and neutral [14], [15]. Sixteen healthy subjects
(10 males and 6 females) aged from 19 to 28 years are selected
in total. For each emotion, 9 emotional movie clips are chosen
according to the ratings of the elicitation effect reported by
subjects after watching clips. The durations of the video clips
range from two to four minutes. The experiments contain 3
sessions, each of which consists of 15 randomly played clips.



The EEG signals, containing 62 channels, are recorded with
an ESI NeuroScan System at a sampling rate of 1000 Hz.
During the experiment, eye movement signals are recorded
simultaneously with SMI ETG eye tracking glasses.

Three-fold cross-validation is adopted so that the 15 seg-
ments in each session are equally split into three parts. For the
convenience of subsequent three-fold cross-validation, each
fold is guaranteed to contain 5 clips with different labels.

B. Experimental Results
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Fig. 2. Confusion matrices of EIG, EEG, EYE, FLF, DGCCA-AWS and
DGCCA-AM for five-category emotion recognition on the SEED-V dataset.
(a), (b), (c) and (d) are confusion matrices from [8]. Each row of the confusion
matrices represents the target class, and each column represents the predicted
class. The element (i, j) is the percentage of samples in class i that is classified
as class j.

TABLE II
SUMMARY OF DGCCA PARAMETERS FOR SEED-V DATASET

Modalities Hidden Hidden Output
layers units dimensions

EEG 3 100±20,30±20 20±10
EYE 3 100±20,30±20 20±10
EIG 4 300±100,100±20,30±20 20±10

The parameters of the model are described in Table II. We
select the best combination of parameters and guarantee that
the output dimensions of different modalities are the same for
each subject. The output dimension is subject-dependent, and
each person has a characteristic optimal output dimension.

TABLE III
AVERAGE ACCURACY (%) AND STANDARD DEVIATION (%) OF DIFFERENT

FEATURES AND METHODS IN SEED-V. THE TOP 5 ROWS ARE RESULTS
FROM [8].

Modality Fusion method
EEG Avg None 68.22
EYE Avg None 62.73
EIG Avg None 60.72

ALL Avg FLF 73.96
Std 10.94

ALL Avg BDAE 79.63
Std 6.93

ALL Avg DGCCA-AWS 74.66
Std 5.87

ALL Avg DGCCA-AM 82.11
Std 2.76

Table III lists the results of some typical existing methods
and DGCCA on the SEED-V dataset. Guo et al. applied
feature level fusion (FLF) and bimodal deep autoEncoder
(BDAE) on SEED-V to fuse modalities and considered SVM
with linear kernel as a classifier [8]. We verify the single
DGCCA with average weighted sum (DGCCA-AWS) and
DGCCA-AM on SEED-V. As can be observed, the accuracy
of the multimodality for each type of emotion recognition is
much higher than for a single modality. This phenomenon
indicates that the three modalities have strongly complemen-
tary characteristics for five emotions. From Table III, we find
that attention weight fusion is effective and achieved the best
performance, i.e., accuracy of 82.11% and standard deviation
of 2.76%.

Figure 2 depicts the respective confusion matrices of EIG,
EEG, EYE, FLF, DGCCA-AWS and DGCCA-AM for five-
category emotion recognition on the SEED-V dataset. The
element (i, j) is the percentage of samples in class i that
is classified as class j. By comparing Fig. 2(f) with the
other subfigures in Fig. 2, DGCCA-AM largely improves
the classification performance for each of the five emotions,
which means that the DGCCA-AM model offers higher fusion
efficiency than other methods. By comparing Fig. 2(e) and
Fig. 2(f), DGCCA-AM performs better with respect to five-
category emotion recognition than does DGCCA-AWS. This
result demonstrates that attention mechanism fusion is more
effective in fusing modalities than average weighted sum.

Fig. 3 shows the average attention weight distributions of all
subjects with respect to the test dataset. We take the average of
the attention weights for all subjects to reduce noise interfer-
ence. From Fig. 3, the test instances of the same emotion from
different trials exhibit similar attention weight distributions.
This means that for the same emotion, the contributions of
EEG, EYE, and EIG to emotion recognition are stable and
exhibit small fluctuations with the change of trial. From Fig. 3,
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Fig. 3. Illustration of average attention weights for test samples. The ordinate is the attention weights of the three modalities, and the abscissa is the test
samples. The weight of each emotion results from the concatenation of the corresponding weights of multiple video clips at different times. Blue, orange and
green lines represent weights for EEG, EYE and EIG signals, respectively.

for disgust, fear, sad and happy emotions, we see that EEG
contributes most to emotion recognition, followed by EYE,
and that EIG contributes the least. This phenomenon indicates
that EEG contains more emotion-related information and that
EYE and EIG contain less information. It also proves that
physiological signals present a greater advantage than other
signals in emotion recognition. By comparing Fig. 2 and
Table III, we find that the greater the average classification
accuracy of a single modality, the greater the corresponding
attention weight. However, in comparing Fig. 2 and Fig. 3,
the attention weights do not always exhibit the same change
pattern as the classification accuracy of the single modality for
individual emotions. This might be because the single modality
only utilizes the characteristics of this modality, rather than
considering the interaction between the different modalities,
and this leads to a certain noncorrespondence between the
classification accuracy and the corresponding weight for each
of the five different emotions.

V. CONCLUSIONS

In this paper, we have introduced DGCCA to five-category
emotion recognition. We have proposed a new DGCCA with
emotion-related attention mechanism for feature fusion. We
have evaluated the performance of our proposed DGCCA-AM
on the SEED-V dataset and compared it with the existing ap-
proaches. The experimental results demonstrate that DGCCA-
AM is superior to the existing methods and achieves the state-
of-the-art performance.
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